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Rotating fluid spheres 

B W Stewart 
Department of Physics, Thomas More College, Ft Mitchell, K Y  41017, USA 

Received 22 October 1982 

Abstract. A new exact solution to the ’slow rotation’ structure equations is presented. It 
is briefly compared with the slowly rotating limit of the Wahlquist solution, with which 
the new solution shares an equation of state. 

1. Introduction 

There has been much recent interest in studying the properties of perfect fluid solutions 
to the slow rotation (Cohen and Brill 1968, Adams et a1 1973, 1974, Whitman and 
Pizzo 1979, Bayin 1981) equations of general relativity. Although these solutions are 
not solutions to the exact field equations, their study is nonetheless important. All 
known neutron stars satisfy the conditions of slow rotation. Thus slowly rotatirig 
perfect fluid solutions can serve as mathematical models for neutron stars. In addition, 
due to the extreme difficulty in solving the exact (nonlinear) field equations for a 
rotating perfect fluid, workers are faced with the choice of studying slowly rotating 
solutions or focusing their attention elsewhere. 

In fact, their difficulty is such that the exact field equations for a rotating perfect 
fluid have only one known non-cylindrically symmetric solution. This solution, due 
to Wahlquist (1968), has been known for some time. Unfortunately the Wahlquist 
solution has a peculiar property which is not well understood. It was determined by 
its discoverer that the surfaces of constant pressure are prolate rather than oblate. 
This result is in contrast to one’s ‘Newtonian-oriented’ intuition. 

Is the prolateness due to the also somewhat unphysical equation of state 

p + 3p = constant 

or perhaps, as Wahlquist suggested, due to the tidal forces exerted by an external 
distribution of matter? It might be that our intuition fails in these matters. Since a 
junction with a vacuum solution has not been found, can one be found, or is such a 
junction impossible? It is believed here that a good understanding of the sole, exact 
axially symmetric rotating fluid solution is essential. 

In this paper we present a new solution to the slowly rotating field equations. This 
solution is similar to the Wahlquist solution in that both share a common equation 
of state. The solution differs from the Wahlquist solution in that in the limit of slow 
rotation the off -diagonal rotation metric functions are different. A comparison 
between the two solutions is helpful in understanding rotating perfect fluids. 

This paper is organised as follows. In 0 2 we present the field equations valid for 
the case of slow rotation. In 0 3, we solve the equations for a slowly rotating 
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Whittaker-like (Whittaker 1968) solution. This represents a new analytic solution to 
the slow rotation field equations. In § 4 we review the Wahlquist solution and examine 
its limit of slow rotation. A discussion is given in § 5 .  

2. The field equations 

The conditions of slow rotation lead to the metric 

ds2 = y2(r) dt2-??-*(r) dr2-r2[de2+sin2 8 (d4  -R(r) dt)’]. 

In this expression, y(r)  and T(r) are solutions to the equation 

The remaining field equations are (8wG = c = 1) 

r2p = ( Y  +2ry’)(7/y)-l, (26, c )  

( 2 4  
where w(r) is the rotation rate of the star. Given a knowledge of w(r), the problem 
at hand is completely determined by solving the system (2), given an equation of state. 
It will be noticed that ( 2 4  is the only equation in the system involving rotation. One 
can then use a known static solution to (2a)-(2c) in ( 2 4  and solve for the remaining 
metric function, R(r), after specifying 6.1 (r). 

We note that ( 2 4 ,  since it is a linear ordinary differential equation, represents an 
improvement, in some sense, over the nonlinear partial differential equations in the 
exact case. Although the general solution is not known, particular solutions (i.e. 
solutions for a particular T,  cc., p and w )  are known. In § 3 we present a new solution. 

2 r cc. = l-T-r?’, 

T ( P + ~ R ’ / ~ )  = i(p + F ) r ( ~ ’ + 4 ~ / r  -4w/r), 

3. Slowly rotating Whittaker-like solution 

The Whittaker solution is 

ds2 = 4-’ dt2-[4’/(1 -K2Gr2)] dr2-r2(d82+sin2 B dd2) ,  (3a)  

(36) 

where 

4-’= 1 +K-2{1 -[(l -K2Gr2)’/2/KG1’2r] sin-’(KG’’’r)), 

and K and G are constants. 

3p +/.L = G, /.L = i G ( 3 K 2 / 4 * -  l ) ,  p = $ G ( I - K ~ / ~ ~ ) .  (4a, 6, c )  

The pressure is a decreasing function, thus the density must be an increasing one. 
This property is somewhat unphysical. In this case equation ( 2 4  becomes 

( 5 )  
We look for a solution in the case of rigid rotation, w = constant. We introduce the 
following new independent and dependent variables: 

The mass density and pressure are given by 

(1 - K 2 G r 2 ) P +  (4 -!GK2r2)fl’/r - 2GK2(fl  - U )  = 0. 

x = K2GrZ,  y = f l - w ,  ( 6 ~  6) 
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respectively, With these transformations, ( 5 )  becomes 

x ( x  - l ) y ” +  ( Y X  - ? ) y ’ + $ y  = 0 

where the prime represents differentiation with respect to x .  This is the hypergeometric 
differential equation for the function y : 

X ( X  - l ) y ” + [ ( l  + U  + b ) ~  - c ] Y ’ +   by = 0, (7a 1 
where 

(76, c, d )  

a = (7 + J l ? ) / 8 ,  b = (7 - J f i ) / 8 .  @a,  6 )  

10 1 1 + a  + b  = y ,  c =7, ab =I. 

Solving these expressions for a and b yields 

The general solution of ( 7 u )  is then 

y =AzFl(a, ,b ,  C ;  x ) + B x ’ - ~ ~ F ~ ( u  + 1 -c, b + 1 -c, 2 - C ;  x ) ,  ( 9 )  

where A and B are arbitrary constants and F is the hypergeometric function. Since 

(10)  

we must choose the constant B = 0 in order that y is non-singular at x = 0. In terms 
of the original variables 

( 1 1 )  

The hypergeometric function converges for all positive values of x < 1. The series 
representation 

l - c = - -  3 
2, 

R(r) = w +A2Fl(a,  6 ,  c ; K2Gr2).  

ab a ( a + l ) b ( b + l )  
C 2c (c + 1 )  2Fl(a, 6 ,  c ; X )  = 1 + - x  + x + . . .  

terminates if a or b is a negative integer or zero. An examination of equations shows 
that a and b are positive; the series does not terminate. 

Requiring continuity of R and the first derivative (R(r) = 2Jr-3 in the exterior): 

J = $wR ’[ 1 - 3Fo/(F* + WO)], R = [ 1 - 3F/(F* + WO)], ( 1 3 4  b )  

where the subscript ‘0’ refers to the value of the hypergeometric function or its 
derivative evaluated at r = R,  the boundary of the body. The solution presented in 
this section represents one of only a handful of solutions to the slow rotation structure 
equations for w =constant, two being given by Whitman and Pizzo (1979),  one by 
Adams and co-workers (Adams et a1 1973), and the remaining one by Bayin (1981).  

4. The Wahlquist solution 

The Wahlquist solution represents an axially symmetric, stationary, type D solution 
of the Einstein field equations for a rigidly rotating perfect fluid with arbitrary.angular 
velocity. Again, the equation of state can be written 

(4a) 

In the limit of slow rotation (i.e. to first order in the rotation parameter), the Wahlquist 

3 p  + p = constant = G. 
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solution can be written as 

ds2 = c#-’ df2  - [4’/(1 -K2Gr2)] dr2 - r2[de2 +sin2 8(d4  - R dt)’], (14a) 

where 

4-’= 1 +K-’{l -[(l -K2Gr2)’’2/KG1/2r] ~in-’(KG’/~r)},  (146) 

(14c) R = (a /K2Gr2){1  -[(l -K2GrZ)’’2/KG1/2r] sin-’(KG’12r)}. 

a = constant. 

A peculiar feature of the Wahlquist solution, previously mentioned, is that the p = 0 
surface is prolate even in the weak field, slowly rotating limit. The cause of this 
unusual property has never been determined, to the author’s knowledge. It will be 
shown in 0 5 that the cause is almost certainly tidal forces due to an external distribution 
of matter. 

5. Discussion 

It would seem reasonable to expect that the limit of slow rotation of an exact solution 
and the exact solution of the slowly rotating equations with the same equation of state 
be identical. In §§ 3 and 4 we have introduced two rigidly rotating perfect fluid 
solutions in which the pressure and density were related by the same equation of 
state. The two solutions are clearly not equivalent as can be readily seen by examin- 
ation of equations (11) and ( 1 4 ~ ) .  In fact fl given by (14c) is not a solution to ( 2 4  
with w =constant. Equation ( 2 4  relates the rotation metric function, R, of a body 
composed of density g and with pressure p, with the rotation rate, W .  If an external 
source is present, (2d) must be altered to reflect this. R given by (14c) then is a 
solution not to ( 2 4  but to another equation incorporating the effect of the external 
mass(es). It would seem then that external sources are present in the Wahlquist 
solution and that junction of the solution to the vacuum is therefore impossible. 

Even though (2d) is not appropriate in this case, it is possible to estimate the effect 
of the external mass (in addition to the prolateness of the object) by substituting (14e) 
into ( 2 4  and calculating the effective rotation rate. This is found to be 

x =KG’/’r, 

In table 1 some values of the ratio of weff(x) to the central value weff!x = 0) are given. 
weff(x) is readily seen to be non-singular for all values of x <1. We note that 
weff(x) a w e f f ( 0 )  and that wLff ( x )  3 0 .  Thus the fluid near the surface ( p  = 0) of the 
body is affected to a greater extent by the external masses than the fluid near the 
centre, This is no surprise. Since the ratio is almost equal to 1 for x <0.35, the 
Wahlquist solution does not differ greatly from the slowly rotating solution in this 
region. However for x > 0.7, the two solutions are very different. 

The slowly rotating Whittaker solution found in this paper represents only the 
fifth such analytic solution to the field equations (2a)-(2d) with w =constant. Since 
the density increases with the radial distance, the solution is appropriate for modelling 
regions in neutron stars in which density inversions take place. This property is also 
present in a class of the slowly rotating solutions given by Bayin. 
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1 0 1.186 0.50 
1.002 0.05 1.238 0.55 
1.006 0.10 1.301 0.60 
1.014 0.15 1.381 0.65 
1.025 0.20 1.483 0.70 
1.039 0.25 1.618 0.75 
1.058 0.30 1.803 0.80 
1.081 0.35 2.077 0.85 
1.110 0.40 2.533 0.90 
1.144 0.45 3.538 0.95 
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